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Abstract--A decorated lattice model, that consisls of decorated bonds and orientational configurations 
of basis in the decorated cell is presented with the use of arbitral '  directionality and ternperatur(qndependeIH 
interaction energies (,f sites to calculate the closed-lor O coexistence curves of two equilibrated binaD, liquid 
phases For mixtures contafifing hydrogeu bonding cun@uunds, the closed-loop diagrams obtained by the 
decorated lattice model are in fair agreement witf', experilnents in tile size, the shape and tile flatness near the 
lower consolute so]ulion temperatur'.,s, and fairly reproduced for pyridine derivatives-water mixtures. The 
directional interaction eHergies bet,,~.eeo tmIike molecules, representiug the strong interactions such as 
hydrogen bonding, a~e found responsible for the enhanced miscibility below the lower conso]ute solution 
teniperatures. Finally, an application of the modified solution im,del, based on the effective interaction 
energies is demonstrated in the prediction of the closed-loop behaviors. 

INTRODUCTION 

The solubility or partitioning of a solute in the liquid 
phases is one of the main concerns in solvent extraction, 
solubilization or purification processes when fine and 
phammceautical chemicals are produced by fermenta- 
tion and chemical synthesis [1]. For a s~mple liquid- 
liquid system, the solubility could be estimated by 
equating the fugacities of species in two equilibrated li- 
quid phases obtained from the equations of state, the 
polynomial expansions of activity coefficients or any 
solulion models developed [2,3]. In predicting the liquid 
behaviors of the strongly polar and solvating groups [4], 
however, any systematic procedure is not available, 
because of their high specificities in molecular structure 
and interaction. 

According to Rowlinson and Swinton iS], the binary 
diagrams of pressure, temperature, and concentration 
are classified to six classes and the phase behaviors of 
closed-loop coexistence curves in a temperature and 
concentration diagram, havirtg two consolute points of 
the upper consolute solution temperature (UCST) and 
the 19wet consolute solution temperature (LCST) [6], are 
categorized as type VI. Since the closed-loops, in most 
cases, are strongly asymmetric and the curvatures near 

*To ~hom all c.rrespondence should be ad@essed 

the LCST's are extremely flat [6], such behaviors can not 
be described by any of the solution models with the use 
of the temperature-independent interaction parameters. 
Often the interaction energy parameters, however, were 
expanded as a function of temperature [3,7] to calculate 
the closed-loops bounded at the upper and lower con- 
solute points. 

In this study, after a brief introduction of the 
decorated lattice model proposed by Anderson and 
Wheeler {8], the shape and the upper and lower con- 
solute points of a closed-Mop diagram are calculated us- 
ing temperature-independent interaction parameters 
and applied to the pyridine derivatives-water mixtures. 
Further, a modification of the model is presented for the 
predictions of the asymmeteric closed-loop coexistence 
c n  r v e s .  

DECORATED LATFICE MODELS 

A pseudo-crystal lattice of a mathematical structure 
occupied with bases of chemicals is often assumed to 
calculate the thermodynamic properties of solutions 
with the use of the partition function of the structure, in 
this decorated lattice model, there are two different 
aspects in calculating the partition function depending 
on whether the lattice or basis is decorated or not. The 
one calculated tile partition function of the lattice coil- 
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sisting of decorated sites and obtained its mathematical 
transformation reuornlalizing Ihe decoraled bond into a 
form of the regular lattice [9-12]. The other used a sim- 
ple lattice to calculate the partition function tram the in- 
teraction energies of a basis quantized fwm s~te to) site or 
from the renormalized energies of the site interactions 
[8,13,14]. 

In transft,rming the partition function, Fisher i9] 
used the bond decimation technique and examined 
the various types of lattice with decorated bonds, but did 
not attempt to calculate the closed loop behaviors. Ap- 
plying the excluded volume concept, Widom [10] 

demonstrated the asymmet~ of the shapes of coex- 
istence curves and the critical exponeuts. Later, Widonfs 
cell model was modified to the bar cell model J i l l ,  
dividing the volume into the primary cells and the decc- 
rated ceils according to the types of interactions, and the 
various types of spectra in the phase behaviors [12] 
were calculated in the variation of the ratio of the in- 
teractiun energies between the different types of cells, 
and the coordination number. The decorati, m method, 
however, did not explicitly show whether the model 
could predict the closed loop coexistence curves or nol. 

Barker and Fock [13], on Ihe other hand, modelled 
the basis of the species in the primary lattice, which has 
the multiple interaction sites with different energies, and 
obtained the essentially symmetric shapes at the dosed- 
loop behaviors including the upper and lower critical 
points. In recent, Walker {14] could calculate the closed 
loop behavior with the effective hamiltonian of a lattice 
obtained from the q-state interaction energies and found 
that the closed-loop behavior was symmetric about the 
axis of x = 0.5. Anderson and Wheeler [8] proposed two 
decorated lattice models depending on whether one of 
the components in the decoraled has one directional in- 
teracti[on among the total spatial orientations or has two, 
and obtained asymmetric closed-loop behaviors. 

From the partition function obtained one can calcu- 
late the equilibrium concentrations. Here, the procedure 
is briefly presented. 
Theoret i ca l  b a c k g r o u n d s  

A decorated lattice structure, constructed with 
primary cells and with decorated cells between the 
primarys, is shown in figure 1. To calculate the partition 
function, several assumptions are set as; 
1. Volume is divided into two classes of the bar cells 

and molecules are distributed in both Ihe primary 
and the decorated ceils. 

2. ~[ i~e basis located in a decorated cell interacts only 
with those of two neighboring primary eells. 

3. Tl~e intermolecular potential is calculated from the 
sum of the pair potentials of sites specified by the 
molecular orientations. 

4. One of the species (A) has two specific interacting 

> 

> 

Fig. 1. Two-dimens ional  representation of a de- 

corated lattice model divided by bar 
cells. 

sites restricted within the orientational space by an 
angle 0, but the other (B) has only one among the w 
molecular orientations independent of the nu tuber of 
the lattice coordinates. 

For a binary mixture of the species, A and B, the 
grand partiun function appropriate for two species filled 
in the cells can be calculated in a dosed form summing 
up the pair potentials of the nearest neighbors of the 
primary cells. The pair potential consists of directional 
interactions, E~ (i, j=  A, B) and of non-directional in- 
teractions, E~ (i, j = A, B). The directional or non-direc- 
tional interactioual energies are summed up along the 
proper configurations in the decorated bond, regardless 
of Ihe orienlations of the primary cells. 

Dividing the summation along the occupancy of 
molecules in the primary or decorated ceils, the parti- 
tion function is given. 

(~, T, C ) =  f '~X'2:C ~ : "~  "''~<~' e x p ( -  E/kT){1 

where ~ (=ZA/Z~) is the fugacity ratio of species of A 
and B. The sum .E runs over all the possible configura- 
tions of A and B in the lattice and of spatial orientations 
of molecule itself and (1) and (2) denote the primary 
and decorated cells respectively and E is the interaction 
energy corresponding to each configuration. N!~ I and 
N!~ ! indicate the numbers of A species in the primary 
and decorated cells. 

The Boltzmann factors of the interaction energies of 
configurations at a given temperature, can be con- 
structed by, 

z)/, --exp ( -  E,ZJkT) (2) 

where T is the absolute temperature and k is the Boltz- 
mann constant. The superscript l represents the direc- 
tinal ( r  or nondirectional ( e ) interaction. Since two 
directional interacting sites are restricted within the 
space of a specific angle 0 by the internal arrangement 
of molecular structure, the number of the available con- 
figurations of the second arrow of the directional interac- 
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tien differs from that of the first ones by w* = 17-~- sin& 
Therefore, once the first arrow of the directional intera.c- 
ticn is selected, the total number of orientations avail- 
able can be determined by, w w* /2 .  Then, tire parti- 
function of the decorated bond at a fixed primary cell, 
Q,u (i,j, k : A, B) can be calculated [8] and shown in ap- 
pendix. Using the partition functions of the decorated 
bonds, the partition function of ttle pr imaw cells of A-A, 
Ad3, and B-B nesting the species of A or B in the 
de:orated cell, can be evahJated as follows, 

Q~A = Q ..... (RAA 4- ~" ) (3-a) 

Q~,~ = q ~  ( R ~ +  ~" ) (3-b) 

and 

Q,~ = q .... (R,,~ • ~') (3-c) 

where R,; (i, ]=  A, B) is the ratio of the partition func- 
tioins of ij bond decorated with the species B to A. 
Following the lattice identities and tire cell partilion 
functions, the partition function of the equation (1) can 
be reduced as. 

E (~', T, C) -Z~'~g ''A" Q~,,u m"A~ oF'"" - -  .aA "'.~A,~ " ' , * ~  ( 4 -  a )  

or 

,E (r T, C ) -- Q~.,,qc/' W c z  a N~$ "AR (4-b}, 

where Naa, N~e~ and Ns,~ are the numbers of tire pairs 
A-A, A-B and B-B, in the primary, cells and q the number 
of the lattice coordinate.The 2, and ~5 in the equation 
(4-b) are given by 

and 

QA~ (61 

where Wa and WB are the total number of orientations 
of molecules. From the analogy of the spin 1/2 lsing 
moclel, the 2, and ~ are found to be equi,calent to those 
of the spontaneous magneti:eation [8]. 
Calculat ions  a n d  Modi f i ca t ions  

Along the standard statistical mechanics of ensemble 
ave'age method [8], the compositions of the coexistence 
cun,'e can be calculated by, 

/ l+mo (se) i q~" q ~" + - -  �9 {I .~-- -  
X4 (2+q) ( ~ + R,~,~) (2+Q 2 

1 1 W ",Z: )~" 
~ ~r ~ .... ~ - + R ~  ~/ + ~{iq) 

where mo (~), equivalent to tbe spontaneous magneti- 
zation and w (,~), the reduced energy per unit cell could 
be calculated from the Pad6 approximations by Scesney 
[14]. The calculations of the' closed-loop behaviors can 

be carried out solving the equation (7) with the intrinsic 
restriction of ~. = 1. 

Applications of the equatiou (7) to multicomponent 
systems is not easy without any modifications, since tile 
cell partition functions become much complicated. Tire 
activity coeffk:ient methods from excess Oibbs free 
energy are convenient to estimate the activities of liquid 
phases, if the decorated lattice mode] is transformed 
without losing the native structures of the decorated lat- 
tice model. A transformation of the decorated lattice to a 
pseudo-lattice can be done [16] calculating the effective 
interaction energy of the normalized lattice by, 

2 k T l n ~ ( ~ ' )  *--' I U ~ - U ~ , ~ ) -  (U,,~-U~,~) (8) 

The transformation carl be incorporated to any lattice- 
born activity rnodels. One of the solution model, UNI- 
QUAC, which was derived from the lattice model and 
the local composition concept, can be remodeled by this 
decorated lattice, irrcorporating the energy parameters 
by tire equation (8). 

RESULTS AND DISCUSSIONS 

In predicting the liquid-liquid equilibria, several 
solution models are applicable except for the closed loop 
behavior. Among the available models, UNIQUAC is 
known to be one of the most sucessfuI mode] when two 
binary interaction parameters are used. Therefore, the 
results of the computer calculations of the decorated lat- 
tice model were compared with the results of the UNI- 
QUAC equation by the same method of Prausnitz, eL al. 
[18]. The computer calculations of the equation (7) were 
performed with the help of tire interactive computer 
graphics. 
D e c o r a t e d  Lattice Model  a n d  UNIQUAC 

The parameters of the decorated lattice model in- 
clude the directional and non-directional interactional 
energies, the number of spatial orientation, and the lat- 
tice coordination number. In calculations, the lattice 
coordination number and the number of spatial orienta- 
tions are fixed. Among tile interaction energies, Ei~ (i, j - 
A or B, and l -  directional or non-directional), the only 
energy parameters between unlike molecules are the 
binary parameters. Depending on the values of energy 
parameters, the shapes of the closed-loops calculated 
vary, in following fashions, 
1. As the directional interaction energies of like- 

molecules become smaller, the size of the dosed- 
loop turns smaller and the shape becomes more dis- 
torted. 

2. As the directional interaction of unlike-molecules 
becomes larger, the range of the phase separation in 
temperature narrower. 

3. The dependence of the shape and size of the closed- 
loop is more sensitive to the nondirectional interac- 
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tion energies than to the directional i~lteraction 300 
energies. 

4. In certain values, the loops are rutted by a pure com- 
ponent boundary as often observed in mixtures 200 
containing the surface active components. 

In addition, the model in the meaningful range of the T (~ 
parameters generates the various shapes of the diagrams 
which are often found in the polymer solutions, liquid 100 
crystals or some systems accompanying the chemical 
reaction or structural transition [2l]. 

For ~he closed-Mop coexistence curves, the solution 0 
models developed thus far are not useful if the interac- 
tion parameters are not expanded at least to a quadratic 0 
function of temperature or an arbitrary function of tem- 
perature [3,6,17]. In figure 2, the calculated phase boun- 
daries of the UNIQUAC equation and the decorated lat- Fig. 3. 
rice model for the ethylene glycol isobutyl ether-water 
system are shown in the dotted and solid lines. The 
tendency of the two-parametric solution model, compar- 

ing that of the decorated lattice model of the equation 
(7), is poor in predicting the shape and size of t l e  closed- 
loop. If the temperature-independent energy parameters 
are used, the UNIQUAC equation lacks any pieces of in- 
formation near the critical points, in particular, near the 
LCST's. Further, since all the solution models of lattice 
borns or the generalized van der Waals models can be 
related to the UNfQUAC model [ 19], the conclusion may 

3OO 

2O0 

T(~ 

t00 

Oo7 
Fig. 2. 

A; W a t e r  / 
B ; Ethylene glycol / I 

isobutyl ether / I 

I 
t 

-- UN1QUAC / ~ . =-~r t 
Decorated (/.~ ,b 
Lattice 
Model I 

I i I I , I 1 ,  I ~ ! 

O. 75 l.O 
X~ 

Temperature-concentration diagram of 

ethylene glycol isobutyl ether-water 

m ixtu res. 
The solid and dotted lines indicate the cal- 
culated diagrams by the decorated lattice 
model and the UNIQUAC equation respec- 
tively and the filled circles are the expe -  
rimeata] data from reference 6. 
Decorated lattice model; co-9000, E~.~ = 
- 3 . 7 0  Kcal/mole, E ~  == -6 .30 ,  u~=5.00, u~ 
=0 .03  
UNIQUAC; r ,=0 .92 ,  r~=4.  917, q,, =1.40, 
q ,=4 .36 ,  AuA,=884.5Kcal /mole,  Aura = 
- 324.2 

�9 - - -  2.3-Dimethyl pyridine 
f: .... 3,4-Dimethyl pyridine 
. . . .  3,5-Dimethyl pyridine 
A Water 

, -o  

i L i i l n i J i l 

0.5 1.0 
X~ 

Closed loop phase diagrams of three iso- 

mers of dimethyl pyridines and water 

sys tems .  

The lines are calculated by the decorated 
lattice and the experimental data[6] also 
shown, w 5000 
2,3-Dimethyl pyridine; E~  - 3 . 9 6 K c a [ /  
mole, E~'~ -4 .40 ,  u~ 0.96, u,.:=1.0 
3, 4-Dimethyl pyridine; E~. r - 5 . 9 0 ,  EA~ = 
- 5 . 3 0 ,  u~ 2.0, u~.=0.83 
3, 5-Dimethy] pyridine; E.~ - - 5.43, 
-5 .29 ,  u,~ 1.87, u~=~l. 1 

extend to other solution models. 
Pyridine derivat ives-water  mixtures  

Remembering the general dependence of tile shape 
and size of the decorated lattice model in mind, the 
dosed-loop diagrams of three isomers of dimethyl 
pyridine and two of ethyl pyridine systems [6] were 
calculated and shown in figures 3 and 4. Since the 
hydrogen bonding energy is about -3  to -6 Kcaltmole 
[20], the values of the directional interaction energy are 
assigned to be the same order of magnitude.One of the 
nondirectional interactions is fixed 1.0 Kca]/mole to 
represent the repulsive force, and tile others are para- 
meterized. The number of directional orientations is also 
fixed at w = 5000 and the angle between two arrows is 
selected to be 109.5 ~ the angle of the sp 3 hybrid orbital 
of tetragonal structure. In diagrams, the data points are 
used in mass fraction, since the mole fraction diagrams 
are too sided toward the water phase (see figure 2) and 
since mass or volume fraction is convertible to mole 
fraction without any difficulties [8]. 

According to the model calculations shown in figure 
3, one may find that, when the UCST's of both the 2, 
3-dimethyl pyridine- and 3, 5-dimethyl pyridine-water 
mixtures are similar but the LCST's are not, the sets of 
parameters are significantly different, and also find that 
the interaction energies of both 3, 4-dimethy] pyridine- 
and 3, 5-dimethyt pyridine-water mixtures are similar, 
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300 

200 

T (~2) 

100 

Fig.  4. 

�9 2-Ethyl  py ridine 
O �9 4-Ethyl  pyridine 
A ; W a t ~ - J i ~ "  �9 �9 e ~ - ' - - - . ~  

, , , k [ ~ [ - ,  , - -J  
0.5 1.0 

X~ 
Closed  loop p h a s e  d i a g r a m s  of two i s o m -  

e r s  of ethyl  p y r i d i n e  and  w a t e r  s y s t e m s .  

The lines are calculated by the decorated 
lattice model and the experimental data~61 
also S]lOWn. to~5()00 

2-Ethyl pyridine; E,,~ = - 5. 39 Kcal/mole, 
E , ~ - - 5 . 4 1 .  u ~ = l . l . u ~ - l ,  l l  
4-Ethyl pvridine; ;" ~ " * . LA., = - 4 .20,  37, 1= ~ ~ = - 4. 
u,~ =0. 99. u~ =0. 96 

when the LCST's are same though the UCST's are much 
different. In comparing the isomers of 2-ethyl pyridine 
and 3, 5-dimethyl pyridine, the values of LCSTs folb~w 
same tendency. As the variations of the LCST's are 
mainly attributed to the strong molecular interactions or 
hydrogen bonding [4,5], it is of no doubt to conclude 
that the directional interaction energies of the decorated 

450 

T(K ) 

350 - 

A; Water 
[3; Ethylene glycol isobutyl ether 

250 I I I J~_J  I l _.J__ J 
0 0.5 1.0 

X~ 

Fig .  5. C losed  loop p h a s e  d i a g r a m  of  e t h y l e n e  

glycol isobutyl e t h e r  and  w a t e r  s y s t e m .  

The solid loop was calculated by the modi- 
fied UNIQUAC following the suggestion of 

qB 
the equation (81. r to, = r  . . . .  ) 

Qa 
= 15600. E (  = - 5.45 Kcal/mole, EA~ -5.15, 
u~ ~0.  48, % = 0  55 

lattice model have a very important role in determining 
the shape of the phase diagrams near the LCST's, Fur- 
ther, from the figures 3 and 4 it is also found that, as the 
methyl groups are located far from the ring nitrogen 
atom, the directional interaction energies increase with 
lowering the LCST's, and that if the directional interac- 
tion energies are similar, the UCST's increase as the in- 
teraction parameters become more repulsive. 
D e c o r a t e d  s o l u t i o n  m o d e l  

The closed-loop phase diagram in figure 2 was re- 
calculated by tim modified UNIQUAC equation, incor- 
porating the original decorated lattice model, suggested 
by the equation (8). In figure 5, the transformation was 
demonstrated to be done without losing the character- 
istics of the decorated lattice model and the intrinsic 
concentration dependence of the UNIQUAC equation. 

C O N C L U S I O N S  

The closed-loop diagrams were calculated with a 
decorated lattice mode] which consists of decorated 
bonds and the proper odentatk)ns of molecules. Com- 
pared with results of the UNIQUAC equation, the cal- 
cu]ated compositions of a closed-loop diagram by the 
model fitted better with experiments in predicting the 
shape and size, and the trends near the critical solution 
temperatures. 

With the use of temperature-independent interaction 
parameters, the decorated lattice model fairly reproduc- 
ed the shapes of the phase diagrams of the dimethyl 
pyridines-and ethyl phyridines-water mixtures, and ex- 
hibited that the strong interactions such as hydrogen 
bonding between the unlike molecules are responsible 
for the lower consolute solution temperatures. 

A simplified modification to activity models was 
given renormalizing the docorated bond by means of 
the effective interactional energies and demonstrated to 
predict the closed loop behavior and the near-critical 
behavior. 
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N O M E N C L A T U R E S  

l 

E,j 

i n  o 

N ~ ,  N ~  

total number of primary cells 
molecular interaction energy_ at a given con- 
figuration, Kcallmole 

interaction energy of sites between i and j, 
Kcal/mole 
spontaneous magnetization 
number of species A in the primary and 
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secondary cells, respectively 
N 0 number of pair i,j 
Q,j partition function of the primary cell i;j 

which nested a decorated lattice point 
Q,~j partition function of the decorated cell of k 

nested by a primary cell i,j 
q coordination number of the lattice 
R# ratio of the partition functions of the de- 

corated cell QiBj/QiAj 

T absolute temperature, K 
u# interaction energy of sites in the solution 

model, Kcal/mole 
ua asymmetric nondirectional energy, E~A- 

E~, Kcal/mole 
u~ symmetric nondirectional energy, EA,~-1/2 

(E.~A + E~), Kcal/mole 
W,. total number orientations of molecules 
w reduced energy per unit cell 
XA mole fraction of A 

ratio of the absolute fugacities 
l - ~ , j  Boltzmann factor of i-j pair with / direc- 

tionality 
0 angle between two directional interaction 

sites, degree 
parameter defined in the equation (5) 
parameter defined in the equation (6) 
Grand partition function 

w number of molecular orientations 

Superscr ip t s  
1 directionality of arrows, directional or non- 

directional 
nondirectional interaction 

r directional interaction 

APPENDIX 

Part i t ion func t ions  of  p r i m a r y  b o n d s  n e s t i n g  a 
d e c o r a t e d  cell 

A partition function QAA~, for an example, of a d~.~ 
corated cell with the primary cell occupied hy A and B, 
can be calculated from the Boltzmann factors and the 
orientational degenracies. Among the ww*/2 orienta- 
tions of A molecule in the decorated cell, one configura- 
tion is that both directional arrows simultaneously in- 
dicate the primary cells. The energy of this configuration 
is EAA + EAB + EA.4 + EA,~. There will be 2(w*- l) configu- 
ratiocs for the cases that only one directional arrow in- 
dicates the primary cells and the energy is E,~A + E~A + 
E~B or E~B + E~A + E,~,~ depending on whether the arrow 
of A is directed toward A or B in the primary cells. Then, 
the cases, none of the directional arrows in the decorat- 
ed cell indicating the primary cells, are counted as 
{(wu;*/2)-2(w*-l)-1}, and the energy of the confi- 

guration is EAA + EAB. Then, the configurational parti- 
tion function QAAB can be given, 

- ( ~ A . ~ + ~ ) + ( ~ o ~ * / 2 )  

- 2  (aJ*- 1) - 1 / r / ~  (A-l )  

and the same procedure applys for the remaining Q~kj 
giving 

QA~A -- t(~7.~)2+2 (w*-- 1) ~A~+ (o~ w*/2) 

- 2  (c,J*- 1) - 1 (~A~) ~ (A-2) 

Q ~  = t (~ .~)~+2 (o~ * -  1) ,~.~+ (co ~ */~ ) 

- 2  (oJ*- 1) - 1/ (~7~)' (A--3) 

Q .... : ( v . ~ - F  w -  1) ~ ~ (A-4) r/ARrl~B 

Q~B.= (2 ;7.~+ w - 2 )  (;7~[~)' (A-5) 

Qs.B= w (7] ,~) ' (A-6) 

with the simplification of E~B = 0[8]. 
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